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Natural selection on cis and trans regulation in yeasts
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Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and
by trans factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources
of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we measure genome-wide
allele-specific expression by deep sequencing to investigate the patterns of cis and trans expression variation between two
strains of Saccharomyces cerevisiae. We propose a statistical modeling framework based on the binomial distribution that
simultaneously addresses normalization of read counts derived from different parents and estimating the cis and trans
expression variation parameters. We find that expression polymorphism in yeast is common for both cis and trans, though
trans variation is more common. Constraint in expression evolution is correlated with other hallmarks of constraint,
including gene essentiality, number of protein interaction partners, and constraint in amino acid substitution, indicating
that both cis and trans polymorphism are clearly under purifying selection, though trans variation appears to be more
sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our
intraspecific variation suggests a significant departure from a neutral model of molecular evolution. A further examination
of correlation between polymorphism and divergence within each category suggests that cis divergence is more frequently
mediated by positive Darwinian selection than is trans divergence.

[Supplemental material is available online at http:// www.genome.org. The sequencing data from this study have been
submitted to the NCBI Gene Expression Omnibus (http:// www.ncbi.nlm.nih.gov/geo) under accession no. GSE20749.]

Untangling the genetic basis of phenotypic variation within and
between species is a central topic in evolutionary biology. It has long
been argued that evolution of protein sequences is insufficient to
explain the morphological diversity present in nature (King and
Wilson 19735). Consequently, evolution of gene expression has often
been invoked as an alternative explanation for phenotypic inno-
vation (Halder et al. 1995; Carroll 2008). As a result, much effort has
been devoted to understanding expression evolution in eukaryotes,
especially model systems like the budding yeast Saccharomyces cer-
evisiae (Rockman and Kruglyak 2006). Previous genome-wide studies
of expression variation in yeast have taken advantage of full-genome
microarrays to determine the linkage relationship between genes
with variable expression and the causative mutations. Generally, it is
assumed that sets of genes exhibiting local linkage in QTL maps are
enriched for cis variation while those with distant linkage are regu-
lated in trans. These QTL studies demonstrated that gene regulation
polymorphisms in yeast are common and are dominated by distant
linkages (Brem et al. 2002; Yvert et al. 2003). Furthermore, it was
shown that many transcripts are linked to only a few “hotspot” reg-
ulators. For example, Yvert et al. (2003) reported 1265 variable tran-
scripts regulated by only 13 distant QTLs. Another study of variation
in transcript levels has corroborated the ubiquity of transcript vari-
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ation across many different strains within S. cerevisiae (Kvitek et al.
2008), concluding that expression polymorphism may be under the
influence of diversifying selection for adaptation to different envi-
ronments. It has also been argued that cis expression level polymor-
phism is under purifying selection, while trans expression poly-
morphism is under positive selection (Ronald and Akey 2007).
Studies in Drosophila took advantage of comparing the allele-specific
expression (ASE) patterns of two parental strains to that of their
hybrid offspring (i.e., F; hybrids) to investigate cis and trans expres-
sion evolution (Wittkopp et al. 2004, 2008). This experimental de-
sign measures the combined expression variation (both cis and trans
effects) at a locus through measurement of expression differences
between two parental strains. The combined effects of all categories
of genetic variation influencing gene regulation can explain expres-
sion differences measured between two genetically distinct strains.
However, expression differences measured within the F; hybrids be-
tween the same two strains can no longer be attributed to trans-
factors, as both genomes share the same cell and the same trans-
factors. Consequently, the hybrid experiment measures only cis
variation. These experiments in Drosophila on 78 genes showed that
cis differences dominate between species more than within species
(Wittkopp et al. 2008). ASE polymorphism studies in yeast have
found that expression level variation is usually numerically domi-
nated by trans variants (Wang et al. 2007; Sung et al. 2009), even
when single-input module genes were chosen to minimize the im-
pact of trans variation (Wang et al. 2007). Additionally, in yeast only
52%-78% of expression QTLs mapped to the same region as the gene
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they regulate were confirmed to be cis (Ronald et al. 2005), implying
that as much as 22%-48% of genes with local linkages might be
regulated in trans. Indeed, Ronald et al. (2005) have reported specific
instances of trans regulation stemming from local linkage. In these
ASE studies, the predominance of trans linkage is generally consis-
tent with the results from QTL mapping (Brem et al. 2002; Yvert
et al. 2003), which demonstrated that the majority of linkages
are distant and therefore are likely to be driven by a few “hotspot”
trans-activating factors that regulate thousands of transcripts spread
throughout the genome. In contrast, a recent genome-wide com-
parison of cis to trans variation between S. cerevisiae and S. paradoxus
has shown that cis variation is more common than trans variation,
though intraspecific data were not reported (Tirosh et al. 2009).

Counting sequencing reads has long been used to measure the
relative copy numbers of those sequences. Bailey et al. (2002) used
an increase in read counts to identify increases in copy number due
to segmental duplication. More recently, Seoighe et al. (2006) used
representation in EST libraries to identify ASE indicative of both
genomic imprinting and genetically caused allelic differences. With
the advent of high-throughput sequencing technologies like 454
Life Sciences (Roche) sequencing, this perspective has become more
quantitative (Springer and Stupar 2007). The application of even
higher capacity deep sequencing technologies to quantitative mea-
surement of nucleotide frequencies has obvious benefits for mea-
suring transcriptomes (Nagalakshmi et al. 2008). It has also enabled
more accurate measurements of allelic differences in genetically
variable nucleotide pools for single nucleotide polymorphism (SNP)
discovery (Van Tassell et al. 2008) and ASE (Wang et al. 2008; Bloom
et al. 2009).

Here, we investigate the relative contributions of cis and trans
regulatory differences to overall expression variation for the entire
genome of S. cerevisiae, using Illumina Genome Analyzer (IGA) se-
quencing of mRNA to measure genome-wide ASE in a co-culture
experiment composed of two strains of S. cerevisiae (denoted as BY
and RM) and in their F; hybrid. We report the relative impact of
selective constraint on various modes of gene regulation within
species across the whole genome for the first time, demonstrating
that a large proportion of genes exhibit expression polymorphism,
with trans variation dominating over cis, even after removing genes
influenced by trans “hotspots” identified by Yvert et al. (2003).
Furthermore, to date, a genome-wide comparison of cis and trans
variation within and between species has yet to be reported. In this
study, we compare our polymorphism data to the divergence data
from a recent study (Tirosh et al. 2009), showing not only that cis
differences are more common between species than within species,
but also that trans variation is much more compatible with a neutral
model of selection, whereas many cis variations appear driven to
fixation through positive Darwinian selection.

Results

Orthology and SNP identification

We designed bioinformatics filters based primarily on unambigu-
ous orthology, unique sequence, and presence of SNPs that se-
lected 4442 genes for analysis from an initial pool of 6604 ORFs
with untranslated region (UTR) information (Nagalakshmi et al.
2008). (A detailed description of these filters is available in
Methods and Supplemental Tables S1-S3.) We identified 893 SNPs
caused by putative genome reference sequence errors and cor-
rected them. In total, our analysis incorporated 35,225 SNP sites
distributed among 4442 orthologous gene pairs.

Intraspecific genomic DNA sequencing

The cell density ratio between any two strains in a co-culture ex-
periment (dc,) need not be 1, which introduces a systematic bias in
mRNA transcript counts between the two strains. To correct for this
bias, we sequenced genomic DNA (gDNA) from the same samples
that provided the mRNA to estimate both dc, (co-culture) and dp,
(F1 hybrid). We estimated that d¢, = 1.30 and that, as expected, dp,, =
1.00. That dy, is indistinguishable from 1, as expected, indicates that
this method is an effective way to estimate d (Supplemental Fig. S1).
We used these ratios in the estimation of allelic expression ratios in
terms of RM/BY (ec, and ey;), accounting for the effect of cell density
(see Methods). We then estimated the means and confidence in-
tervals for cis and trans contributions to expression change in terms
of deviations from the null hypotheses: logx(eq,) = loga(ecis) and
loga(eco) = loga(ecis) + 1082(etrans) (see Methods). Our results agree
closely with a data set of 227 genes collected in another study using
pyrosequencing (Fig. 1; Sung et al. 2009). The correlation between
these genes ranges from 0.74 to 0.81, and the regression lines esti-
mated from these comparisons are indistinguishable from the di-
agonal running through the origin with a slope equal to 1.

Intraspecific transcriptome sequencing
and expression estimation

Among the 4442 genes that passed our bioinformatics filters, 4282
have sequence reads for both alleles in both experiments (Sup-
plemental Tables S1-83). From 12 channels of IGA sequencing of
cDNA for each of the two samples (24 channels in total), we
mapped 1.202 and 1.188 million sequence reads from the hybrid
sample to BY and RM SNPs, respectively; for the co-culture sample
we mapped 1.096 and 1.330 million reads.

In total, 1180 genes (28%) exhibit expression polymorphism
at a P-value threshold of 1% (false discovery rate [FDR] < 5%;
Supplemental Fig. S2; correlated estimates, see Methods). Next, we
classified genes by examining the relationship between cis and
trans polymorphisms throughout the genome (Fig. 2D; see
Methods section Independent Estimates). The data indicate that
trans variation is more frequent, as observed previously (Brem et al.
2002; Yvert et al. 2003), and show greater magnitudes of change
(|log, (etrans) |>[108, (ecis)| (Wilcoxon rank sum test, all P-values <
0.01) than cis variation. Nearly four times as many genes exhibit
only trans change as genes that show only cis change (123 vs. 33).
For the 178 genes with significant [logz(e.s)| 7 [1082(€xrans)|, 79% of
them (140) are genes where |loga(€.is)| < [l0g2(€trans)|- Interestingly,
116 genes show unambiguous expression variation for cis and trans
variation simultaneously (Fig. 2C,D, “dominant” and “both” cat-
egories; our use of “dominant” here should not be confused with
genetic dominance; it merely indicates that variation for one type
of regulation is greater than the other), while another 589 genes
show clear evidence for variation in one category and ambiguous
evidence in another (Fig. 2A,C,D, the two “major” categories).
Thus, trans differences clearly dominate, influencing 64% (558/
863) of differentially expressed genes, though almost half of genes
showing expression polymorphism indicate a clear significant cis
effect (49% or 421/863). (See Supplemental Fig. S6 for a more de-
tailed description of the classifications above.)

Previous eQTL studies showed a large “hotspot” effect (Brem
et al. 2002; Yvert et al. 2003 showed this for 1265/1716 distant
eQTLs and 1265/2294 of all eQTLs). To investigate ASE variation
for genes less likely to be influenced by these hotspots, we dis-
carded the 1265 genes identified in Yvert et al. (2003) (Fig. 2D). As
expected, 76% of the differentially expressed genes discarded fell
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Figure 1. Comparison of two methods of estimating ASE polymorphism. (A-C) Y-axis, logx(e;c4) (IGA transcriptome data), versus x-axis, logz(ep,ro)
(pyrosequencing). (A,B) comparison of co-culture and hybrid results from the two methods, respectively; (C) comparison between IGA sequencing and
pyrosequencing for the value logz(ec,) — logz(ex,), which is also logz(eyans). To test if the regressions differ from equality, we tested the estimated
regression coefficients against the null hypothesis Hp: m=1; b= 0. All P-values for these hypothesis tests for all regression parameters are not significant (all
P-values > 0.05), indicating that IGA and pyrosequencing give very similar results.

into either the various trans categories (68%) or the “both” cate-
gory (8%). In contrast, <2% of the hotspot genes fell into the cis-
only category, with the remaining 22% of genes falling into cis
categories with a putatively minor trans component. Despite dis-
carding these genes, trans variation remains the prevalent form of
variation (Fig. 2D).

Evolutionary constraint in expression polymorphism

To test our ASE data for evolutionary constraint, we compared the
magnitudes of our expression ratio estimates between categories
of genes predicted to be strongly constrained versus those predicted
to be weakly constrained (Fig. 3). For protein-protein interaction
networks (Stark et al. 2006; Collins et al. 2007), those genes with the
most interactions had significantly lower expression variation than
those genes absent from the networks, both for cis and trans poly-
morphism (Wilcoxon rank sum tests, all P-values < 107°). Essential
genes (genes that cause lethality when deleted; Deutschbauer et al.
2005) also showed significantly less expression variation than non-
essential genes for both cis and trans (Wilcoxon rank sum tests, all
P-values < 10'®), corroborating a previous study (Ronald and Akey
2007). One important measure of constraint based on sequence
evolution is w (Yang 1997, 2007), the ratio of the rate of nonsyn-
onymous substitution to the rate of synonymous substitution (i.e.,
K./K). Our expression estimates show that the value of o is signifi-
cantly correlated with both |logx(es)| and |logx(eqans)| (all P-values <
0.0001, for Pearson, Kendall, and Spearman correlation coefficients).
Comparing the 50th percentile of genes with the lowest w to those
with the highest o (Fig. 3C) also demonstrates that the magnitude of
expression variation in strongly constrained genes is lower than that
in less constrained genes.

This correlation between w and expression is surprising, as
it contradicts a previous report that found no such relationship
(Ronald and Akey 2007). One possible source of this discrepancy
might be because we compared the expression level difference
between the set of genes with low o to those with high w, while the
Ronald and Akey study did the opposite, comparing o between
genes without expression variation to those with expression vari-

ation. To reconcile this difference, we performed two additional
tests: (1) comparing o between genes showing a significant P-value
(P <0.01) for the null hypothesis log,(e) = O to those that were not
significant (P > 0.05) using the Wilcoxon rank sum test; and (2)
correlation tests between [log,(e)| and w, using the Pearson, Kendall,
and Spearman methods. For all eight of the tests above (one
Wilcoxon test and three correlation tests for both cis and trans), we
found that low o is associated with low expression variation (all
P-values < 1075).

To investigate whether cis or trans variation is more sensitive
to purifying selection, we compared the quantity |logz(€srans)| —
[loga(e.is)| between constrained and unconstrained categories. For
constraint based on both protein—protein interactions and essen-
tial/nonessential genes, the quantity |logz(€xans)| — |10g2(exis)| is
significantly lower in the strongly constrained categories than in
the weakly constrained categories (Fig. 3A,B). Comparing the genes
with the lowest w to those with the highest shows a positive rela-
tionship, though the difference is not significant (all correlation
P-values > 0.05).

Comparing expression polymorphism to expression divergence

We compared the relative contributions of cis and trans regulatory
polymorphism in our data set to cis and trans regulatory divergence
between S. cerevisiae and S. paradoxus from a recent publication
(Tirosh et al. 2009). We adopted the following perspectives: (1)
comparing the relative cis/trans contributions within and between
species; and (2) comparing the correlations between polymorphism
and divergence between cis and trans. In the first comparison, we test
the hypothesis proposed in a recent study in two Drosophila sister
species (Fig. 4; Wittkopp et al. 2008). We compared the relationship
between the hybrid experiment versus the co-culture/parental ex-
periment within and between species (Fig. 4A,B, respectively), using
both major axis (MA) regression and standardized major axis (SMA)
regression (Warton et al. 2006). Regression estimates closer to the
diagonal indicate that cis predominates, whereas an estimate near
the horizontal axis indicates that trans predominates. We show that
the interspecific slope is significantly greater than the intraspecific
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Figure 2. Genome-wide ASE polymorphism in S. cerevisiae: (A-C) y-axis, loga(e;s), versus x-axis, 10g2(esans)- (A) Scatter plot of cis and trans estimators
with the shading of the points indicating what category individual genes fall into, as determined by their two-dimensional 99% confidence intervals. These
classifications are made with respect to the relationship between confidence intervals of each point and the four lines running through the origin, which are
the two axes and the two diagonals. Trans-only (t only) and cis-only (c only) indicate that the confidence intervals for the genes, respectively, overlap
the logx(eis) = 0 or the log,(erans) = 0 axis line only. “Both” refers to the genes that only overlap either the log,(es) = 10g2(€rans) line or the log,(egs) =
—logz(erans) line (the positive and negative diagonals). Trans-dominant (t dom) and cis-dominant (c dom) genes overlap no lines at all but fall in the
quadrants nearest the logy(e;s) = 0 and logz(esqns) = O lines, respectively. Trans-major (t maj) overlaps the log,(e.;s) = O line and at least one of the
diagonals, whereas cis-major (c maj) overlaps the logx(esqns) = 0 line and at least one of the diagonals. “ns” indicates nonsignificant genes: each of them
overlaps both the log,(e;s) = 0 and the log,(etrans) = 0 lines. A more detailed explanation of how genes are classified can be found in Supplemental Figure
S6. (B) A contour plot of the two-dimenstional probability density function of the data (from the two-dimensional kernel density estimator in the MASS
library in R) indicating where most genes fall in the cis/trans space using independent estimates of cis and trans. The “elevation” indicated by the contours
expresses the probability of a point falling in that region. The total volume beneath the surface sums to unity. (C) A summary of classifications based on the
results from Figure 1A. Dark green, trans-only; light green, trans-dominant; dark orange, cis-only; light orange, cis-dominant; hashed regions, the “cis/
trans-major” classifications; white, both; gray, nonsignificant genes. (D) The histogram indicates that significant trans changes dominate in comparison to
significant cis changes. The left bar of each pair is before discarding the 1265 “hotspot” genes from Yvert et al. (2003), and the right bar is after discarding
them. Importantly, trans-dominant and cis-dominant are not to be confused with genetic dominance; instead, they are meant to convey that the
magnitude of trans variation is greater than cis variation or the reverse, respectively.

(P < 2.2 X 1076 for both the MA and the SMA regressions), in- tion as a proportion of variation measured in the co-culture ex-
dicating that the magnitude of cis regulatory variation relative to periment, |log(ecis)|/|10g2(epar)|; and the magnitude of cis variation
trans is greater between species than within species. as a proportion of the total variation in both cis and trans,

Next, we investigate three measures of cis variation: the [loga(ecis)|/[|10gz(€cis)| + [10g2(errans)|]- We plotted each of these values
magnitude of cis variation, |logx(es)|; the magnitude of cis varia- against its quantile (Fig. 4C-E) and found that the interspecific cis
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Figure 3. Constraint in expression polymorphism. (A) Genes with presently no detected protein—protein interaction (ppi) partners in current data (light
bars) versus genes in the upper 50th percentile of those showing interactions (dark bars). (B) Nonessential genes (light bars) are genes whose homozygous
knockouts have a fitness of greater than 0.85. Essential genes (light bars) are those genes where homozygous knockouts are lethal. (C) Genes in the lower
50th percentile of w (dark bars) versus genes in the upper 50th percentile of w (light bars). Pairs of bars labeled “cis” and “trans” compare the mean
expression divergence |log(e)| between putatively strongly constrained and weakly constrained categories. The category “trans — cis"” compares the
quantity |loga(ewans)| — |logz(eqis)| between putatively strongly constrained and weakly constrained categories. Significance is indicated as follows: ns, P>
0.05; *, 0.01 < P < 0.05; **, 0.01 < P < 0.001; ***, P < 0.001. Both cis and trans mutations are subject to purifying selection in all comparisons. trans
mutations are more sensitive to changes in constraint than are cis changes when constraint is determined by number of protein interactions or essentiality,

but not when measured by protein coding sequence ().

values are consistently higher than the intraspecific cis values,
regardless of how cis values are scaled (Wilcoxon rank sum test,
P-value < 2.2 X 1076 for all three comparisons). Interestingly, we
show that the cis share of total cis + trans variation (Fig. 4E) is sig-
nificantly higher for divergence than for polymorphism. Next, we
conduct a formal test of the neutral mutation hypothesis across the
genome by comparing our polymorphism data to the divergence
data of Tirosh et al. (2009). We follow the framework of Kreitman
and Aguade (1986) by dividing significant expression differences
into a 2 X 2 contingency table. The test decisively rejects the
predictions of the neutral theory (Table 1A; P < 10719, Fisher’s exact
test). Clearly, there are far more cis expression differences between
the two species than expected from the within-species polymor-
phism data, suggesting that natural selection plays an important
role in shaping expression variation.

To trace the source of this pattern, we examined the cis and
trans data separately. Interestingly, for significant trans differences,
genes showing expression polymorphism tend to show differential
expression between species; the correspondence between signifi-
cantly polymorphic and significantly divergent genes is much
greater than expected by chance (Fig. 5A; Table 1B; Fisher’s exact
test, P < 1 X 107°). In contrast, no corresponding association is
observed for cis variation (Fig. 5B; Table 1B; Fisher’s exact test, P >
0.25). Under neutral theory, neutral variation is correlated between
polymorphism and divergence, while nonneutral categories will
exhibit weaker correlations or even an absence of correlation alto-
gether. This suggests that the number of significant differences for
cis-regulatory change may be subject to nonneutral forces. Unlike
for qualitative measures discussed above, this pattern does not ex-
tend to quantitative measures of expression ratios (Fig. 5C,D; Sup-
plemental Fig. S3C,D).

Discussion

Our results demonstrate that inferring the genetic architecture of
expression level evolution can be performed in a straightforward,
comprehensive, and rigorous manner. Through a novel applica-
tion of simple binomial models, we can infer confidence intervals
for cis and trans effects while correcting for experimental sampling
biases (via the d parameter, Methods; Supplemental Fig. S1). These

cis and trans parameter estimates are highly concordant with py-
rosequencing experiments (Fig. 1).

Our expression parameter estimates (Fig. 2) demonstrate that,
while expression polymorphism is common for both types of re-
gulatory variation, trans differences dominate both in magnitude
and in number. Interestingly, even for such a short evolutionary
time as the divergence between the BY and the RM strains, many
genes exhibit both cis and trans differences simultaneously, indi-
cating that they have sustained at least two mutations affecting the
expression phenotype. This prevalence of trans variation persists
even when the trans-regulated genes controlled by hotspots (Brem
et al. 2002; Yvert et al. 2003) are discarded (Fig. 2D). One central
result of molecular evolution is that many if not most nonsyn-
onymous mutations in genes are deleterious. To investigate this
perspective in the context of expression polymorphism, we com-
pared expression constraint to constraint in other functional
categories. We predict that genes with more interaction partners,
essential genes, and genes with a low o to be more strongly con-
strained. Comparing the magnitude of expression variation be-
tween pairs within each category shows that constraint in ex-
pression corresponds to constraint in each of three other measures
of constraint (Fig. 3, cis and trans columns). Interestingly, while our
results regarding essential genes agree with another report on ex-
pression variation (Ronald and Akey 2007), we find conflicting
results with regard to w; we find a correlation between o and cis
variation (Fig. 3; Results), whereas Ronald and Akey do not, per-
haps as a result of different means of measuring expression or
different subsets comprising our respective comparisons.

To determine which category of gene regulation was more
strongly influenced by purifying selection, we compared the dif-
ference between trans and cis between various categories (i.e.,
|logz(etrans)| — |10g2(ecis)|, Fig. 3, the trans — cis column). For all
functional categories, trans variation was higher in the uncon-
strained category than in the constrained category, with this differ-
ence being statistically significant for protein-protein interactions
and essential genes. This stronger filtering of trans polymorphisms
in essential genes and in genes with many interaction partners sug-
gests that expression differences between species will be more and
more strongly influenced by cis variants compared to trans variants
as we move from considering less constrained to more constrained
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Between-species regulatory differences are dominated by cis-regulatory changes more than within-species differences. Aand Bfollow Figure 1

in Wittkopp et al. (2008), by comparing the regression between hybrid and co-culture lines for intraspecific and interspecific variation, respectively. The
slope for the interspecific comparison (A) is larger than for the intraspecific comparison (B), regardless of the line-fitting method used (SMA and MA
regressions were conducted using the “smatr” package in R (Warton et al. 2006; R Development Core Team 2009). C-Efollow Figure 2 in Wittkopp et al.
(2008). Measurements of cis between species consistently dominate, regardless of how they are measured. All comparisons are significant, P < 2.2 X
107'%, indicating that cis-regulatory changes dominate between species more than within species.

categories. Indeed, it is well established that on very long timescales,
important “toolbox” genes can provide much phenotypic inno-
vation despite their highly constrained peptide sequences, but
such innovation is strongly influenced by evolution of cis elements
(Carroll 2008). However, the opportunity for adaptation through
reconfiguring trans-regulators remains an intriguing possibility for
genes from less constrained categories. Future investigations of ASE
in mutation accumulation lines (MAL) compared to natural lines
(NL) (Denver et al. 2005) would enable an examination of the dis-
tribution of fitness effects for a wider range of deleterious variants. If
our hypothesis above is correct regarding trans variants, the expres-
sion ratio of NL versus MAL should be lower in constrained cate-
gories and higher in relaxed categories.

In order to extend our inferences to longer timescales, we
compared our polymorphism data to a recent data set for expres-
sion between S. cerevisiae and S. paradoxus. One key prediction of
the neutral theory of molecular evolution is that the degree of
polymorphism and the rate of fixation are both increasing func-
tions of the mutation rate (Kimura 1968; Kimura and Ota 1971),
leading to the recognition that comparing intraspecific variation
(polymorphism) to interspecific variation (divergence) is a power-
ful strategy for testing hypotheses concerning natural selection
(Kreitman and Aguade 1986; Hudson et al. 1987; McDonald and
Kreitman 1991; Bustamante et al. 2002). Importantly, such con-
trasts can distinguish between variation resulting from higher
mutation rates (Fisher 1922; Haldane 1927) and variation due to
the action of natural selection.

A recent study compared cis and frans expression evolution
within and between species for 78 genes in two species of Dro-
sophila (Wittkopp et al. 2008). Plots of hybrid ASE differences
versus parental differences showed that interspecific ASE variation
fits more closely to the “all cis” line (the diagonal where hybrid =
co-culture) than does intraspecific ASE variation (Fig. 1, Wittkopp
et al. 2008), though these results were not consistently significant
between different partitions of the data (for three-fourths of the
partitions, the slopes of one estimate were within the 95% confi-
dence interval [CI] of the other [Wittkopp et al. 2008; Supple-
mental Table 5], assuming 95% CI = slope, mean *= 1.96 X SE).
Similarly, for relative contributions of ASE as measured by cis/(cis +
trans), polymorphism and divergence were not significantly dif-
ferent (Fig. 2, column 3; Wittkopp et al. 2008). Interestingly, in one
comparison where the authors inferred polymorphism indirectly
from divergence data, a cis effect was observed (Fig. 3; Wittkopp
et al. 2008).

To test the hypothesis that cis variation is subject to natural
selection on a genome-wide scale, we compared our expression
polymorphism data to a recent expression divergence data set
(Tirosh et al. 2009). Our results strongly suggest that in comparison
with intraspecific expression variation, interspecific expression
variation is much more strongly shaped by cis evolution. Impor-
tantly, regressions between co-culture and hybrid experiments fall
significantly closer to the “all cis” (i.e., hybrid = co-culture) line
for interspecific comparisons than for intraspecific comparisons
(Fig. 4A.B). Moreover, the cumulative cis expression divergence is
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Table 1. Comparison between polymorphism and divergence in cis and trans mutations

(A) Comparison of the significant genes between cis and trans categories from our
polymorphism data and the divergence data from Tirosh et al. (2009)?

Polymorphism Divergence
Cis 396 1270
Trans 412 541

(B) Significant or nonsignificant genes among comparisons between polymorphism and divergence®

Significant polymorphism Nonsignificant polymorphism

Trans
Significant divergence 124 (94.8) 417 (446.2)
Nonsignificant divergence 288 (317.2) 1523 (1493.8)
Cis
Significant divergence 222 (213.8) 1048 (1056.2)
Nonsignificant divergence 174 (182.2) 908 (899.8)

gence within cis and trans individually. By
doing this, we hope to adduce evidence
bearing on which of the two categories is
more likely to be neutral. Under neutrality
we predict that levels of polymorphism
and divergence are mutation driven. If the
rate of mutation varies among genes, it
should vary in the same manner between
polymorphism and divergence for the
same gene. For example, genes that are
significantly variable within species should
be more likely to be variable between spe-
cies, and genes that are not variable within
species should be less likely to be variable
between species. Indeed, this pattern is ex-
actly what we observe for frans mutations
(Table 1B; Fig. 5A), suggesting that trans

“Significant nonhomogeneity is evidence of a violation of the neutral theory, as described by Kreitman

and Aguade (1986). P-value < 2.2 X 1076,

bThis enables a test of homogeneity between polymorphism (columns) and divergence (rows), when
the categories are divided between significant and nonsignificant genes. The P-values for trans and cis
are 2.33 X 10~*and 0.377, respectively. This result is unchanged if the independent estimates are used

(Supplemental Table S4).

“Numbers indicate observations and numbers in parentheses indicate expectations. The numbers in

boldface correspond to Figure 5, A and B, respectively.

significantly and consistently above that of cis polymorphism (Fig.
4C), even when cis divergence is scaled by expression variation
between the unhybridized parental strains (Fig. 4D). These results
strongly suggest that cis variation plays a greater role between
species than within species. Most interestingly, when we compare
the relative contributions of cis variation to total cis + frans ex-
pression variation between polymorphism and divergence, we
find that cis divergence plays a larger role than would be predicted
from polymorphism data (Fig. 4E), strongly implicating the action
of natural selection. We think it possible that a larger sample size in
the Drosophila genome might corroborate our results.

We also presented a formal test of the neutral mutation hy-
pothesis across the genome by comparing our significant poly-
morphic genes to the significant divergent genes from the data of
Tirosh et al. (2009). We divide significant expression differences into
a 2 X 2 contingency table (Table 1A), as described in Results. If the
data follow the predictions of the neutral theory (or alternatively
if both categories experience similar selection regimes), then
divergence/polymorphism ratios should be similar for both cis and
trans categories. A violation of homogeneity within the table is ev-
idence that at least one category violates neutrality, though failure
to reject is only a weak indication of neutrality, as it is possible that
both categories could be under similar nonneutral selective regimes.
The test unequivocally rejects the predictions of the neutral theory
(Table 1A; P< 1 X 107'°, Fisher’s exact test), strongly suggesting that
either there is an excess of divergent cis differences between species
as might occur due to positive selection or that there is an excess of
polymorphism in trans regulatory variation within species such as
might be observed under balancing selection (Kreitman and Aguade
1986; Hudson et al. 1987). Importantly, this test is capable only of
determining that the table is highly heterogeneous. It cannot de-
termine the source of the departure from homogeneity.

The test above relies on the correlation between polymorphism
and divergence for neutral variants between two different categories.
To interrogate this predicted relationship in more detail, we mea-
sured the association between significant polymorphism and diver-

differences conform to one prediction of
neutral theory. On the other hand, cis dif-
ferences fit this prediction rather poorly
(Table 1B; Fig. 5B). The number of signifi-
cant cis differences common to both poly-
morphism and divergence is no greater
than expected by chance, indicating that
polymorphism and divergence correlate
only weakly, arguing against the neutrality
of cis variation. Given the relatively low level of cis polymorphism
versus the high level of cis divergence combined with the evidence
from Table 1B, we suggest that the cis-regulatory differences are under
positive selection rather than the alternative that trans polymorphism
is under balancing selection. We also examined the correlation be-
tween the magnitude of expression divergence and polymorphism
(Fig. 5C,D). Unlike the count data described above, for pooled ex-
pression variation estimates, polymorphism predicts divergence
equally well for both trans variation (* = 23%, Fig. 5C) and cis vari-
ation (% = 26%, Fig. 5D; but see also Supplemental Fig. $3). While for
trans variants, whether or not a gene is polymorphic is a good pre-
dictor for whether or not it differs between species, the magnitude of
expression level polymorphism is only weakly related to the magni-
tude of expression level divergence. This weak relationship nearly
disappears if the genes are not pooled by polymorphism expression
level (data not shown), likely because the magnitude of change in
expression level can vary greatly between different mutations in the
same gene.

These observations indicate that trans variation conforms more
closely to the predictions of the neutral theory than cis variation.
Thus, our comparisons of polymorphism and divergence data for
expression levels strongly suggest that cis evolution strongly shapes
differences between species and that such variation is strongly sha-
ped by positive natural selection. Taken together, these analyses paint
a comprehensive picture of the selective forces shaping cis and trans
evolution and reinforce the idea that cis expression differences play
a dominant role in adaptive expression divergence between species.

Methods

Yeast strains and growth conditions

Two culture types were prepared: co-culture and hybrid. The co-
culture experiment was prepared from approximately equal
amounts of two MATa strains called BY and RM. The hybrid strain
was derived by mating BY (MATa) X RM (MATw) and were all grown
in standard YPAD medium.
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Figure 5. Greater correlation between trans polymorphism and divergence than between cis poly-
morphism and divergence. (4,B) The number of significant genes manifested both between intraspecific
measurements and interspecific measurements for trans (A) and cis (B). The histograms indicate the null
hypothesis of homogeneous association between significant polymorphisms and significant divergence.
Let P be the number of genes with significant expression differences within species and D be the number
of differences between species. If P gene names were randomly drawn without replacement from the
gene list, the histogram represents the probability that an independent draw of D genes results in x
genes common to both lists. Each histogram is the hypergeometric distribution representing the upper
lefthand cell in the 2 X 2 table in a Fisher’s exact test (Table 1B). For trans genes (A), the cell indicates
overlap between significant expression polymorphisms and significant expression divergence and it is
significantly higher than expected by chance, while for the cis genes (B), the overlap is well within the
range expected simply by randomly shuffling the data. (C,D) The relationship between polymorphism
and divergence estimates is shown for genes with significant polymorphism estimates. The regression
estimate between trans polymorphism and divergence describes 23% of the variance, while that be-
tween cis polymorphism and divergence describes 26%. Each point is composed of genes grouped by
bins according to polymorphism estimates. The values are obtained by taking the median of each bin for
divergence and polymorphism. Each bin contains 11 or 12 genes.

which double-stranded ¢cDNA was syn-
thesized, fragmented, and subjected to
the Illumina Genome Analyzer (IGA) se-
quencing protocol.

For expression measurements, over-
night subcultures were used to prepare four
technical replicates for each of the hybrid
(WL201) cultures and BY + RM co-cultures
with starting ODgoo = 0.1 and harvested
when cell density reached ODggp = 1.0.
Total RNA was then extracted by the hot
acid phenol method (Kohrer and Domdey
1991). Total RNA concentration within
each replicate was quantified on a Nano-
Drop 1000 spectrophotometer (Thermo
Scientific). Equal amounts of RNA were
pooled within each sample group (i.e., hy-
brid and co-culture) into a combined RNA
sample. The quality of combined RNA was
assessed with the BioAnalyzer (Agilent).

The hybrid and co-culture mRNA was
purified using oligo(dT) Dynabeads (Invi-
trogen) according to the manufacturer’s
protocol. Subsequent reverse transcription
was carried out with oligo(dT) primers and
the Superscript II kit (Invitrogen) follow-
ing the manufacturer’s instructions. Tran-
scriptome sequencing steps were per-
formed by Fasteris SA, Switzerland. Sam-
ples containing cDNAs fragments of 200-
400 nucleotides (nt) were then sequenced
on 24 lanes (12 for hybrid and 12 for co-
culture) of flow cell by an IGA sequencer
using Illumina’s genomic shotgun pro-
tocol, yielding 35-nt-long reads.

Yeast genome sequencing

To estimate relative cell densities in the
samples and to confirm SNP assignments,
the gDNA from the same hybrid and co-
culture samples as used for cDNA se-
quencing were extracted, fragmented, and
subjected to the IGA DNA sequencing
protocol. The genomic DNA was extracted
using Qiagen Q100 genomic purification
kit (Qiagen). Within each sample group,
equal amounts of DNA were pooled into
a combined DNA sample, analogous to the

The laboratory strain designated “BY” is officially named
BY4741 (MATa his3A1 leu2A0 met15A0 ura3A0) and is a descendant
of $288C. The strain designated “RM” (a gift from Dr. Leland
Hartwell, Fred Hutchinson Cancer Research Center) is officially
either RM11-1a (MATa lys2A0 ura3A0 ho ::KAN) or RM11-1a (MAT«o
lys2A0 ura3A0 ho::KAN). Both are haploid strains derived from
Bb32(3), a natural isolate described previously (Mortimer et al.
1994). We have designated the hybrid of a BY4741 X RM11-1«a
cross constructed in our lab as WL201. The co-culture sample is
simply a mixture of BY4741 and RM11-1a. All yeast strains were
grown in YPAD media at 30°C with 250 rpm shaking.

Total RNA extraction and sequencing

To estimate expression ratios for the hybrid and co-culture exper-
iments, total RNA was extracted and purified for mRNA, from

pooling strategy employed for the transcriptome sequencing above.
The combined DNA sample was then fragmented by sonication,
and the shotgun libraries were prepared according to Illumina’s
gDNA protocol. The genomic DNA sequencing was carried out on
the Illumina GA-II (IGA-II) sequencer in the High Throughput Se-
quencing Core Facility of Academia Sinica, yielding reads 40 nt in
length.

Mapping IGA reads to the reference genomes

The BY reference genome was downloaded from the SGD project on
April 3, 2008 (ftp://ftp.yeastgenome.org/yeast/). The RM reference
genome was downloaded from the Saccharomyces cerevisiae RM11-1a
Sequencing Project, Broad Institute (http://www.broad.mit.edu).
Every cDNA sequence read was used as a query against each reference
yeast genome using MEGABLAST with the “wordsize” parameter set
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to 8 (Zhang et al. 2000), yielding two homology search datasets, one
for the BY genome and one for the RM genome. We then recorded all
hits with up to two nucleotide mismatches. A mismatch may be due
to a sequencing error in the sequence read we obtained, a sequence
error in the reference genome(s), or a SNP site between the two ref-
erence genomes. For each set of homology search results, we classi-
fied each read as uninformative (perfectly matching both genomes);
informative only (matching one or two SNPs for one genome); in-
formative and error (matching one SNP and containing one IGA
error); error only (containing one or two IGA errors). See Supple-
mental material for more details for these classifications.

From the 12 channels of cDNA IGA sequencing data for each
of the two samples (total 24 channels), we obtained 71,309,740
and 71,549,168 raw reads from the hybrid sample and the co-
culture sample, respectively, which were subjected to classification
described above (Table S1). Most of the mapped reads matched one
place in the genome, uniquely identifying the expression of a sin-
gle transcript (Table S2).

In order to determine if our read mapping strategy resulted in
spurious differential expression (Degner et al. 2009), we examined
each combination of experiment (hybrid or co-culture) with strain
(BY or RM). By dividing the data for each combination into six
channels each, we compared two independent partitions of the
same biological material, determining how often the null hypoth-
esis of no differential expression is rejected when differential ex-
pression is absent. Our results indicate typical rejection rates (Sup-
plemental Fig. S4).

In order to investigate potential sources of sequencing or
amplification bias in our data, we examined the number of times
a unique read was represented in each channel of sequencing data.
The histograms of expression read-counts compare favorably to
a priori estimates based on discrete stochastic models (Supple-
mental Fig. S5).

Identifying orthologous pairs and polymorphic sites
between the BY and RM genomes

Each gene from a refined set of BY gene transcripts with UTR in-
formation (Nagalakshmi et al. 2008) was aligned onto the RM ge-
nome using BLAT and axtChain (Kent 2002; Kent et al. 2003) to
identify its ortholog in the RM genome. These alignments were
then used to identify polymorphic sites between the two orthol-
ogous genes. We restricted our attention to high scoring pairs
(HSPs) derived from the chaining procedure, neglecting reads that
mapped to nonhomologous regions.

Exclusion of overlapping gene regions

Transcript sequencing data were derived from double-stranded
cDNA; therefore, we were unable to determine which strand reads
are mapped to for regions where two transcripts from opposite
strands overlap (Nagalakshmi et al. 2008). To avoid misattribution,
we first temporarily excluded overlapping regions. Genes whose
average read count per base in nonoverlapping regions of the gene
were less than 0.025 read/nt were discarded from the data set. Next,
we reintegrated reads mapping to regions that no longer over-
lapped with expressed genes on the opposite strand, yielding 4566
SNP containing gene pairs possessing unique orthologous regions.
These genes were subjected to further study (Table S3).

Detecting errors in the genomic sequences of the two strains

If the expression level at a SNP exhibits a particularly strong bias
toward one allele, this indicates either a strong pattern of differential
expression or an error in the reference genome we aligned the reads
to. Our data contained 1490 SNPs exhibiting a very strong bias to-

ward one allele in the cDNA data. By comparing the SNP count data
obtained from cDNA to that obtained from gDNA, we classified 893
of such sites as true errors in the reference genomes, 540 as true
differential expression, and failed to classify 57 sites. Using this in-
formation, we corrected the 893 “true error” SNPs in the reference
genomes and discarded from our data set the 57 SNPs which we
failed to classify. We then repeated the mapping computation to
obtain the final read counts. For more details on this procedure,
please consult the Supplemental Materials.

Modeling gene expression as a discrete sampling process

To estimate expression parameters on IGA read data, we formu-
lated our question in terms of the binomial distribution. A nor-
malization parameter is required because differences in total reads
between samples occur whenever sampling effort is not evenly
distributed between the samples, due to either study design or
experimental error. Though some authors recommend employing
methods related to standard quantile normalization (Bolstad et al.
2003) for count data (Balwierz et al. 2009), we consider rescaling
counts (which contain important information regarding the sam-
pling variance) to be less than ideal. Moreover, we apply no noise
correction. There are reasonable physical rationales for noise correc-
tion in array studies (Tu et al. 2002). In the case of deep sequencing,
however, it is not clear which mapped sequence reads comprise the
“signal” and which comprise the “noise.”

Cis and trans parameter estimation

Let a measurement of total informative expression read counts for
a gene be N and the read counts for the RM allele be X and for the
BY allele be N-X. The data has a binomial distribution with pro-
portion parameter p. Let j represent a single experiment (co-culture
or hybrid), e be the expression ratio parameter between RM and BY
and d be the normalization ratio parameter between RM and BY.
The proportion parameter p can be expressed in terms of d and e:

djej
p. = .
/ d/'é’/' +1

The assumptions that the hybrid experiment exhibits only cis
variation and the co-culture exhibits a combination of cis and trans
variation can be expressed as

€Hy = €cis
€co = EcisCtrans -

Consequently, the binomial proportion parameters can be re-
written as follows:

p _ dHyeHy _ dHyecis

Hy = =

4 dHyeHy+1 dHyea'5+1 (1)
_ dcoeco dcoCcisCtrans

Pco

deoeco+1 dcoCcisCtrans + 1

Thus, likelihood functions for the hybrid and co-culture experi-
ments can be expressed as:

L(eHyldeXHyaNHy) = L(ecis‘dHanHnyHy)

N\ 2 Notn(2)
=\ Xuy Py (1* Hy)

L(eCo|dC07 XCD:« NCo) =L(eci57 Ctrans \de XC07 NCO)

(g O

Xco

Because Equation 3 prevents us from estimating e, independently
of eqs, we can instead examine the product of Equations 3 and 4
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to obtain a likelihood function where e;,,s can be estimated in-
dependently from e:

Nmy\ x
L(ecim €trans |drry, Xry, Ny, dC07XC07NC0) = (XHy )pH;y
y

Nmy—Xny (N Neo—Xco
X(lpry) y<XCZ>(1*PCo) <.

We can then obtain expression parameter estimates for e from
Equations 2 or 4 and for e,,,s from Equation 4 using standard likeli-
hood maximization methods in R (R Development Core Team 2009).

Independent estimate of cis and trans parameters

When cis and trans are estimated as described above, the estimates
are negatively correlated (cf. Fig. 2B and Supplemental Fig. S2B; see
Supplemental material for more details). In order to estimate e
and e,,s independently, we divide the hybrid data into two par-
titions of six channels each. We then estimate e.;; from Equation 2
using one partition of the hybrid data and estimate ey, from
Equation 4 using the other partition of the hybrid data and all of
the co-culture data. For a rationale of when correlated estimates are
preferred and when independent estimates are preferred, see the
Supplemental material.

Estimation of the normalization parameter

We estimate the normalization parameter d from the gDNA data
(which is independent from the cDNA data) as follows:

where i indexes each gene and j represents the experiment (hybrid
or co-culture).

Sequence divergence statistics

Orthologous genes between S. cerevisiae and S. paradoxus were de-
termined from the Fungal Orthogroups Repository (Wapinski et al.
2007). The coding sequences were frame-aligned so that pairwise
codon divergence statistics K, and K; could be calculated using the
PAML package (Yang 1997, 2007). All methods of alignment and
statistical calculation follow those used in Emerson et al. (2004), with
the exception that MUSCLE (Edgar 2004) was use for alignment.

Acknowledgments

W.-H.L. was supported by Academia Sinica, Taiwan; the In-
ternational E. Balzan Prize Foundation; and NIH grants GM30998
and GMO081724. ]J.J.E. was supported by an Academia Sinica Dis-
tinguished Postdoctoral Fellowship. We thank Michael McDonald,
Jun-Yi Leu, and Bin He for thoughtful discussion of key issues in
early versions of the manuscript. We also thank three anonymous
reviewers for helpful suggestions and constructive criticisms.

References

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD,
Myers EW, Li PW, Eichler EE. 2002. Recent segmental duplications in the
human genome. Science 297: 1003-1007.

Balwierz PJ, Carninci P, Daub CO, Kawai ], Hayashizaki Y, Belle WV, Beisel C,
van Nimwegen E. 2009. Methods for analyzing deep sequencing
expression data: Constructing the human and mouse promoterome with
deepCAGE data. Genome Biol 10: R79. doi: 10.1186/gb-2009-10-7-179.

Bloom ]S, Khan Z, Kruglyak L, Singh M, Caudy AA. 2009. Measuring
differential gene expression by short read sequencing: Quantitative
comparison to 2-channel gene expression microarrays. BMC Genomics
10: 221. doi: 10.1186/1471-2164-10-221.

Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of
normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics 19: 185-193.

Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of
transcriptional regulation in budding yeast. Science 296: 752-755.

Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, Hartl
DL. 2002. The cost of inbreeding in Arabidopsis. Nature 416: 531-534.

Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: A
genetic theory of morphological evolution. Cell 134: 25-36.

Collins SR, Kemmeren P, Zhao X-C, Greenblatt JF, Spencer F, Holstege FCP,
Weissman JS, Krogan NJ. 2007. Toward a comprehensive atlas of the
physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:
439-450.

Degner JE, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK.
2009. Effect of read-mapping biases on detecting allele-specific
expression from RNA-sequencing data. Bioinformatics 25: 3207-3212.

Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, Thomas WK. 2005.
The transcriptional consequences of mutation and natural selection in
Caenorhabditis elegans. Nat Genet 37: 544-548.

Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis
RW, Nislow C, Giaever G. 2005. Mechanisms of haploinsufficiency
revealed by genome-wide profiling in yeast. Genetics 169: 1915-1925.

Edgar RC. 2004. MUSCLE: A multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics 5: 113. doi:
10.1186/1471-2105-5-113.

Emerson JJ, Kaessmann H, Betran E, Long M. 2004. Extensive gene traffic on
the mammalian X chromosome. Science 303: 537-540.

Fisher R. 1922. On the dominance ratio. Proc R Soc Edinb 42: 321-341.

Haldane J. 1927. A mathematical theory of natural and artificial selection,
Part V: Selection and mutation. Proc Camb Philol Soc 23: 838-844.

Halder G, Callaerts P, Gehring WJ. 1995. Induction of ectopic eyes by
targeted expression of the eyeless gene in Drosophila. Science 267:
1788-1792.

Hudson RR, Kreitman M, Aguade M. 1987. A test of neutral molecular
evolution based on nucleotide data. Genetics 116: 153-159.

Kent WJ. 2002. BLAT—the BLAST-like alignment tool. Genome Res 12: 656~
664.

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. 2003. Evolution’s
cauldron: Duplication, deletion, and rearrangement in the mouse and
human genomes. Proc Natl Acad Sci USA 100: 11484-11489.

Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217: 624-
626.

Kimura M, Ota T. 1971. Protein polymorphism as a phase of molecular
evolution. Nature 229: 467-469.

King MC, Wilson AC. 1975. Evolution at two levels in humans and
chimpanzees. Science 188: 107-116.

Kohrer K, Domdey H. 1991. Preparation of high molecular weight RNA.
Methods Enzymol 194: 398-405.

Kreitman ME, Aguade M. 1986. Excess polymorphism at the Adh locus in
Drosophila melanogaster. Genetics 114: 93-110.

Kvitek DJ, Will JL, Gasch AP. 2008. Variations in stress sensitivity and
genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:
€1000223. doi: 10.1371/journal.pgen.1000223.

McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh
locus in Drosophila. Nature 351: 652-654.

Mortimer RK, Romano P, Suzzi G, Polsinelli M. 1994. Genome renewal: A
new phenomenon revealed from a genetic study of 43 strains of
Saccharomyces cerevisiae derived from natural fermentation of grape
musts. Yeast 10: 1543-1552.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M.
2008. The transcriptional landscape of the yeast genome defined by
RNA sequencing. Science 320: 1344-1349.

R Development Core Team. 2009. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Rockman MYV, Kruglyak L. 2006. Genetics of global gene expression. Nat Rev

Genet 7: 862-872.

Ronald J, Akey JM. 2007. The evolution of gene expression QTL in Saccharomyces
cerevisiae. PLoS One 2: e678. doi: 10.1371/journal.pone.0000678.

Ronald J, Brem RB, Whittle J, Kruglyak L. 2005. Local regulatory variation in
Saccharomyces cerevisiae. PLoS Genet 1: e25. doi: 10.1371/journal.pgen.
0010025.

Seoighe C, Nembaware V, Scheffler K. 2006. Maximum likelihood inference
of imprinting and allele-specific expression from EST data.
Bioinformatics 22: 3032-3039.

Springer NM, Stupar RM. 2007. Allele-specific expression patterns reveal
biases and embryo-specific parent-of-origin effects in hybrid maize.
Plant Cell 19: 2391-2402.

Genome Research 835
www.genome.org



Emerson et al.

Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. 2006.
BioGRID: A general repository for interaction datasets. Nucleic Acids Res
34: D535-D539.

Sung H-M, Wang T-Y, Wang D, Huang Y-S, Wu J-P, Tsai H-K, TzengJ, Huang
C-J, Lee Y-C, Yang P, et al. 2009. Roles of trans and cis variation in
yeast intraspecies evolution of gene expression. Mol Biol Evol 26:
2533-2538.

Tirosh I, Reikhav S, Levy AA, Barkai N. 2009. A yeast hybrid provides insight
into the evolution of gene expression regulation. Science 324: 659-662.

Tu Y, Stolovitzky G, Klein U. 2002. Quantitative noise analysis for gene
expression microarray experiments. Proc Natl Acad Sci 99: 14031-14036.

Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley
CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. 2008. SNP
discovery and allele frequency estimation by deep sequencing of
reduced representation libraries. Nat Methods 5: 247-252.

Wang D, Sung H-M, Wang T-Y, Huang C-J, Yang P, Chang T, Wang Y-C, Tseng
D-L, Wu J-P, Lee T-C, et al. 2007. Expression evolution in yeast genes of
single-input modules is mainly due to changes in trans-acting factors.
Genome Res 17: 1161-1169.

Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG. 2008.
Transcriptome-wide identification of novel imprinted genes in neonatal
mouse brain. PLoS One 3: €3839. doi: 10.1371/journal.pone.0003839.

Wapinski I, Pfeffer A, Friedman N, Regev A. 2007. Natural history and
evolutionary principles of gene duplication in fungi. Nature 449: 54-61.

Warton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line-fitting
methods for allometry. Biol Rev Camb Philos Soc 81: 259-291.

Wittkopp PJ, Haerum BK, Clark AG. 2004. Evolutionary changes in cis and
trans gene regulation. Nature 430: 85-88.

Wittkopp PJ, Haerum BK, Clark AG. 2008. Regulatory changes underlying
expression differences within and between Drosophila species. Nat Genet
40: 346-350.

Yang Z. 1997. PAML: A program package for phylogenetic analysis by
maximum likelihood. Comput Appl Biosci 13: 555-556.

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol
Biol Evol 24: 1586-1591.

Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R,
Kruglyak L. 2003. Trans-acting regulatory variation in Saccharomyces
cerevisiae and the role of transcription factors. Nat Genet 35: 57-64.

Zhang Z, Schwartz S, Wagner L, Miller W2000. A greedy algorithm for
aligning DNA sequences. ] Comput Biol 7: 203-214.

Received October 7, 2009; accepted in revised form April 1, 2010.

836 Genome Research
www.genome.org



